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Solutions Qualitatively 
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Energy Again 

• Use work-energy theorem to estimate the energy loss 

during one cycle in underdamped case 

 

 

 

 

 

• Energy damping rate 

 

 

 

• Energy damping rate b/m, velocity damping rate β = b/2m 
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Driven Damped Motion 

• Suppose now a driving force Fext acting on the oscillator 

 

• Linear Inhomogeneous ODE. General solution: particular 

solution plus general solution to the inhomogeneous problem. 

 

 

 

• Because linear superposition valid if 

 

 

 

• General method: solve for sinusoidal driving terms and sum 
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For Sinusoidal Driving 

 

 

 

• Particular solution for exponential driving force is just the 

exponential 
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General Solution 

• The general solution to the forced harmonic oscillator is 

 

 

• But x1 and x2 are damped (vanish as t  ∞). They are 

transient solutions 
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Amplitude 

 

 

 

 

 

 

 

 

 

 

 

• Resonance curve 
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Resonance Q Value 

• The width of the resonance curve is characterized by the 

Q-value: FWHM resonance curve ω0/Q 
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Other Mnemonics for Q 

• π  times the number of oscillations in a decay time 

 

 

 

• Inverse of the fractional energy dissipated in one radian of 

oscillation 

 

 

 

• ω0 times ratio between stored energy and average power 

loss 
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Phase Shift 
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Fourier Series 

• Decompose driving term into sinusoids and harmonics and 

sum to get total response. Can do this for strictly periodic 

driving forces 

 

• Fourier Series (1st Version) 

 

 

 

• Orthogonality 
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Fourier Expansion 

• Expand general function and use orthogonality 

 

 

 

 

 

 

• Similarly 
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Rectangular Pulse 
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Oscillator Driven by Periodic Pulse 

• Problem 

 

 

• Particular Solution 

 

 

 

 

 

• Because of resonant denominator, in general only a few 

resonance terms are significant. 
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Parseval’s Theorem (Fourier Series) 

• General result in infinite dimensional vector spaces. For 

case of  Fourier series use orthogonality 

 

 

 

 

 

 

 

• Very useful also when doing Fourier Transforms 
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Fourier Series 

• The more common definition for Fourier Series is 

 

 

 

• The orthogonality conditions are now 

 

 

and don’t have to treat n = 0 separately. 

• Parseval’s Theorem for a real function is 
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